
Data Synchronization and Conflict Resolution for
Mobile Devices

YounSoo Kim and Hoon Choi

Dept. of Computer Engineering, Chungnam National University
Gung-dong, Daejeon 305-764, Korea
{kimys,hchoi}@ce.cnu.ac.kr

Abstract. Proliferation of personal information devices results in a difficulty of
maintaining replicated copies of the user data in data stores of the various de-
vices. Data synchronization is an automated action to make the replicated data
be consistent with each other and up-to-date. The traditional consistency mod-
els and the conflict resolution schemes do not fit to the synchronization of rep-
licated data in the mobile environment due to the lacks of simultaneous update.
This paper defines types of data conflict that occurs in synchronization process
of replicated data between the multiple client devices and a server along with
the resolution rules for each conflict scenario in the recent-data-win policy.
These rules have been implemented and verified in a data synchronization
server which was developed based on the SyncML specification.

Key Words: data synchronization, consistency of replicated data, conflict reso-
lution

1 Introduction

Advance of mobile communication devices and technologies has brought the mo-
bile computing era. People can access Internet from anywhere, anytime by using
personal information devices such as PDA(Personal Data Assistant)s, handheld
PC(Personal Computer)s and cellular phones.

Proliferation of personal information devices has resulted in a difficulty of main-
taining replicated copies of the user data in various devices’ data storage. A user may
have the same address book both in his cellular phone and PDA. If the user modifies
a data item in his PDA, it causes the data being inconsistent with the replicated ones
in other devices. Data synchronization is an automated action to make the replicated
data be consistent and up-to-date with each other. Data synchronization needs to
resolve conflicts between multiple values or operations made to the different copies
of the data due to simultaneous updates on different devices.

Computer
at work

Computer
at home

Figure 1. Data Synchronization in Mobile Environment

There are numerous studies about data conflict and consistency models in data-

base and file system context. Balasubramaniam and Pierce [15], Ramsey and Csirmaz
[16] studied about file synchronization in a replicated file system. While [15] showed
the conflict resolution rules based on a condition change of a file system before and
after synchronization, [16] presented the rule based on the operations applied to each
replica file system. Terry [11], and Page [17] studied synchronization of replicated
database. Synchronization of the distributed replicated data store, either it is the data-
base or the file system, occurs in real-time, therefore the update in one data store
propagates to the remaining data stores in real-time. In this model, the conflict mainly
concerns multiple simultaneous write operations on the same data item and this is
called the ‘write-conflict’.

However synchronization of replicated data of mobile devices has different char-
acteristics. These devices are generally owned by one person and the propagation of
the updates are made via one device, the server, there are seldom a simultaneous
access to a data item nor the write-conflict. Also the updates made on a mobile device
may not be propagated to other devices of the person until he initiates synchroniza-
tion of the device to the server. Therefore update consistency model for data stores of
mobile devices classifies to the eventual consistency [18] that does not require simul-
taneous update property. Therefore the traditional conflict resolution scheme does not
seem to fit for this case.

The purpose of this study is to clarify the resolution rules for each conflict sce-
nario. We classified the types of data conflict that may occur in synchronization proc-
essing of replicated data in multiple client devices and a server in mobile computing
environment, then we identified the resolution rules for each conflict scenario. These
rules have been implemented and verified in a data synchronization server which was
developed based on the SyncML specification. Only the rules for recent-data-win
policy has been presented in this paper due to the space limit. The paper is organized

as follows. Section 2 describes the synchronization types, and Section 3 shows the
conflict resolution rules, followed by implementation issue in Section 4.

2 Data Consistency Model for Mobile Device

Update patterns of replicated database are generally categorized to a master-slave
model and a peer-to-peer model. In the master-slave model of replicated database, the
update on the slave database is temporary and it becomes valid only after committed
by the master database. On the other hand, each replica database has the same compe-
tence as master database and update in any database is valid in peer-to-peer model.

Computer
at work
(Server)

Computer
at home
(Client)

(Client)

(Client)

Figure 2. Master-slave model : replicated data stores in mobile environment

Because replicated data store in mobile computing environment is usually con-
tained in a small, portable device like a PDA or a cellular phone, the data store has
limited capacity and is less stable compare with desktop computers. Thus, it is a
common way to take the master-slave model in which a desktop computer is used as
the master data store (server) and portable devices are slaves(clients). In this model,
when some data are modified at a client device, the update is available only in that
device. In order to propagate the update to other devices, it communicates indirectly
through the server(Figure 2). The server stores the modified data and maintains the
records of modification made either by the server or by one of the clients, this record
is used when the server synchronizes with other client data store. This record, the
change-log information guarantees the consistency of replicated data in multiple de-
vices (Figure 3). This paper is also based on the master-slave model.

DC210023john
RA110034john
RC210002jhcho

AA110001jhcho
OriginGuidNumactionFlagdbIDDeviceIDGuidNumUserID

DC210023john
RA110034john
RC210002jhcho

AA110001jhcho
OriginGuidNumactionFlagdbIDDeviceIDGuidNumUserID

ChangeLog Table

UserID : User Identification
GuidNum : The Global Unique IDs for a client application data
DeviceID : The client device identification
dbID : The type of service (“A” : Addressbook, “C” : Calendar)
actionFlag : The type of command that must be responsed to the client device

(“A” : Add, “R” : Replace, “D” : Delete, “C” : Copy)
OriginGuidNum : It will be the original GuidNum if the actionFlag type be the “Copy”

Figure 3. Information in the change-log table

Traditionally, replicated databases with a central master topology are regarded to
avoid write-conflicts whereas replicated databases with a peer-to-peer topology must
detect and resolve conflicts [9]. Also propagation of updates often occurs in a differ-
ent time frame. An update occurred in one mobile device may not be propagated to
other devices of the person until he synchronize the devices to the server. Consistency
model for this case is the eventual consistency [18] that is characterized by the lack of
simultaneous updates. Only if users perform synchronization operation with the
server before he accesses the local data store, this model guarantees any of the client-
centric consistency [19] which is applied to ordinary replicated data stores in the
networked distributed systems.

The conflict that may occur during the synchronization of mobile devices is those
between different operations that needs to be applied to a data item of a device by
simultaneous access or different time frame, which we define the ‘semantic conflict’.
For example, suppose Device 1 has requested the server to ‘delete’ data A. After the
server deletes the data A which is due to Device 1’s request, it records in the change-
log table that ‘delete’ operation needs to be performed regarding the data A in other
Device (e.g. Device 2, Device 3 etc.) which belong to the same user. Other device,
say Device 2, may later request the server to ‘replace’ the data A with some other
value without knowing that the data has been deleted by other device, this is an ex-
ample of the semantic conflict. The resolution rules for such a conflict, i.e., actions to
be taken to resolve the conflict should be defined at the server.

3 Semantic Conflict and Resolution

3.1 Conflict Resolution Policies

A conflict resolution policy is the criteria of which data to select as a valid one
when two devices in synchronization have different values for the same data item.
Table 1 shows possible conflict resolution policies. Services or synchronization ap-
plications may support all or subset of these policies. One of them may be selected by
a service administrator or a device-owner.

Table 1. Conflict resolution policy

Conflict resolution policy Meaning
Originator Win Take the data item of the originator
Recipient Win Take the data item of the recipient

Client Win Take the data item of the client device
Server Win Take the data item of the server

Recent Data Win Take the data item which has been updated recently in
time.

Duplication Apply the requested modification on the duplicated data
item while keeping the existing data.

Due to the space limitation, this paper deals only the conflict resolution rule of the

Recent-Data-Win policy.

First, we need to define which point of time to look at to judge ‘recentness’. Pos-

sible time points to compare can be listed as follows.

(1) User-update-time, TU

(2) Client-access-time, TC

(3) Server-access-time, TS

User-update-time means the time point at which the user updated the data in the

device. Client-access-time is the time point at which a client device initiated synchro-
nization with the server. Mobile devices are not necessarily connected with the server
(primary data store) all the time, they may be used independently and only be con-
nected to and possibly synchronized with the server from time to time. That means a
user may synchronize with server at the time he updates certain data, or may postpone
synchronization to some time later. Finally server-access-time is the point of time that
the server accesses its database to execute update requests. Roles of the client and
server are relative. If the primary data store requests synchronization to mobile de-
vices, client-access-time is the time when the server requests the synchronization.

To support Recent-Data-Win policy, data creation time or update time should be
also stored with associated data item.

Adopting the user-update-time, TU, seems most rational because it is based on
user’s intend to update data in his device. But system clock of the user device may
not correct or intentionally tempered. The objectiveness in this case is weak and may
even cause a security problem. TC is based not by when the data is updated, but by
when the data is synchronized. Adopting TC is arguable bacause a data may be
regarded as a recent one even though it might be modified quite a long time before
the synchronization. Also, in correct system clocks of devices and non-deterministic
communication delays may cause unfair winner.

Unless all the user’s devices are well synchronized by a reliable global clock, TU
or TC may not be trustable. Therefore, we consider the server-access-time in this pa-
per.

3.2 Resolution Rules for the Recent-Data-Win Policy

When a record in the change-log information exists for a data item to be synchro-
nized, semantic conflict can occur between currently requested operation and re-
corded operation in the change-log information. In this section, we show the conflict
resolution rules for Recent-Data-Win policy to resolve conflict.

There may be many different synchronization operations but these operations can
be classified into ‘add’, ‘replace’ and ‘delete’ type operations. For instance, the
SyncML specification defines 12 commands, but they are represented by these 3
basic commands [6].

Conflict Resolution processing consists of the following two phases. Detailed ac-

tions in each phase depend on the conflict resolution policy.

Phase 1 decides which data wins among the server’s value and the client’s one.
Phase 2 updates the change-log information accordingly in the server.

Data stores in the server or client devices manage their data records by unique
system-level identifier, not by the content of the data. For example, a data ‘Tom’ with
system identifier 245 is different one from ‘Tom’ with system identifier 597. Com-
monly used identifiers are GUID (Globally Unique Identifier) and LUID (Locally
Unique Identifier). LUID is usually used in the client device and it is meaningful only
in that local data store. GUID is used in the server and is meaningful in service sys-
tem wide.

When a new data item is added in a client device, a new LUID is assigned to the
data by the client device and used locally in that client until the data is removed.
When this new data along with the LUID is sent to the server for the synchronization,
a new GUID is assigned to the data item by the server. The (GUID,LUID) pair asso-
ciated with the newly added data is kept in the server.

Whichever time point of section 3.1 is used, the server compares the time associ-
ated with the data item in the change-log information with the time with the current
operation, then resolves the conflict as the rules in Table 2. In the table, opt(oi) de-
notes the current operation to be performed in the server on the data item oi and opt-

1(oi) denotes the operation performed previously on the same data item, i.e., the data
item with the same (GUID,LUID) pair.

Table 2 Resolution Rules for the Recent-Data-Win Policy

opt(oi) opt-1(oi) Action Rule
add
delete add
replace

error T.1

add delete/error T.2
delete delete
replace delete T.3

add replace/error T.2
delete replace
replace replace T.4

Rule T.1 : This is the case that a client has requested to add a data item which was

assigned some GUID in the server, but there has been operation opt-1(oi) (either it is
add, delete or replace) performed previously on this data item. This cannot happen
considering GUID is unique. Either the server has assigned a wrong GUID or the
client sent a wrong command that is ‘add’. It is implementation dependent to decide
which side is faulty and how to handle the exception, but the change-log information
should not be modified in any case.

Rule T.2 : It is the case of deleting (or replacing) the data item which has been
added previously, opt-1(oi)= ‘add’. This case consists of two sub cases.
T.2.1 If there is an entry in the change-log information which is for oi with this de-
vice’s identifier, i.e., the device which has requested opt(oi) , and ‘add’ was the opera-
tion performed previously, in other words :

add)())](DeviceID(changelog[1 == i

t-
i

t oopoop

then treats it as an error by the same reasoning of Rule T.1.
T.2.2 Otherwise, i.e. :

 (case 1) changelog[or null))](DeviceID(=i

t oop
 (case 2) DeviceID(opt(oi)) ≠ DeviceID(opt-1(oi))

it is not an error. This happens when a device wants to delete (or replace) oi after
itself added oi in the previous synchronization processing (case 1). Another case that

it can happen is that oi was added to the server by some other device but oi has not
been synchronized with this device (case 2). In this case,

Phase 1 : the server deletes oi
Phase 2 : other devices that have records for them in the change-log information

have not synchronized yet, so the records in change-log can be silently
deleted.

In case the server wants to replace it,
Phase 1 : the server replace oi by executing opt(oi)
Phase 2 : add an entry in the change-log with ‘replace’ for other device.

Client devices will handle ‘replace’ in the change-log information as ‘add’ if oi does
not existent in its local data store.

Rule T.3 : This is the rule to handle ‘delete’ request after oi has been deleted or
replaced previously.

First, search the change-log information to find entries with the same device identifier
as the device which requested opt(oi) :
T.3.1 : if changelog[delete)())](DeviceID(1 == i

t-
i

t oopoop
 Phase 1 : no action is required because it has been already deleted from the server.
 Phase 2 : delete the change-log entry which is for oi with this device’s identifier
T.3.2 : if changelog[replace)())](DeviceID(1 == i

t-
i

t oopoop
 Phase 1: delete oi
 Phase 2 : delete the change-log entry which is for oi with this device’s identifier

Then, investigate the change-log entry which is for oi but with different device identi-
fier :
T.3.1 : if opt-1(oi) = delete, discard the request because oi has been already deleted.

(null Phase 1 and Phase 2)
T.3.2 : if opt-1(oi) = replace
 Phase 1 : null,
 Phase 2 : change the operation of change-log entry to ‘delete’.

Rule T.4 : This is the rule to handle ‘replace’ request after oi has been deleted or
replaced previously.

First, search the change-log information to find entries with the same device identifier
as the device which requested opt(oi) :
T.4.1 : if changelog[, delete)())](DeviceID(1 == i

t-
i

t oopoop
Phase 1 : add oi with the previous GUID in the database
Phase 2 : delete the entry in the change-log.

T.4.2 : if changelog[, replace)())](DeviceID(1 == i
t-

i
t oopoop

Phase 1 : change the data record value to the requested data value
Phase 2 : delete target entry in the change-log.

Then, investigate the change-log entry which is for oi but with different device identi-
fier :
T.4.1 : if opt-1(oi) = delete,

Phase 1 : null because oi has been processed already in T.4.1 of the first step.
Phase 2 : modify the change-log to ‘replace’ because the item being requested ‘de-
lete’ is not deleted yet

T.4.2 : if opt-1(oi) = replace,
Phase 1 : replace oi with the requested data value
Phase 2 : null

4 Implementation

We have developed a data synchronization server and implemented the afore-
mentioned conflict resolution rules in the server to verify the rules. We used the
SyncML protocol suites from the SyncML Initiative for the communication between
client devices and the server [1,6,7,8]. The server provides vCard and Vcalendar
applications. The server successfully accomplished synchronization according to
various scenarios [5] with multiple client devices.

The Server Application provides an interface for a user or the application adminis-
trator to modify contents data at the server. The SyncML Toolkit encodes and de-
codes SyncML messages. The Sync Agent implements the SyncML protocols. There-
fore, its function is application independent and can be commonly used for all
SyncML applications. On the other hand, the Sync Engine implements application
dependent part such as a service policy, resolution rules in case of data conflict, etc.
The Session Manager manages a temporary, session related information that needs to
be maintained in the server during a session. Lastly, the Open DB Interface imple-
ments interfaces to access data in database.

All the frames of the CNU SyncML Servers except the Session Manager were im-

plemented into DLLs. We used HTTP(Hyper Text Transfer Protocol) to communicate
with a SyncML client device and JNI(Java Native Interface) to load DLLs.

We verified the server based on the conformance test specification of the SyncML
Initiative [1]. The SyncML conformance test scenarios consist of exchanging mes-
sages that include various commands such as Add, Replace, and Delete between
clients and the server. We also used our own test scenarios intensively for
synchronization tests for two application services; an address book and a calendar.

Figure 4. CNU SyncML Server Framework

 5 Conclusions

As mobile communication technologies are being developed faster than ever,
more people will get benefit in the mobile communication environment. Also device
technology and battery power will be improved in near future. In spite of technology
improvement, it is natural to think that portable, mobile devices will have less data
storage and stability than desktop server computers. So, we need data synchronization
to backup data in a mobile device to a reliable server computer, or to make replicated
data be consistent with each other. A user may have an address book in a cellular
phone and the same data in his PDA as well since he can use multiple devices.

The semantic-conflict may occur when we access the replicated data. This study
showed the conflict resolution rules when multiple devices synchronize their data by
the recent-data-win policy in the mobile computing environment. The conflict resolu-
tion rules and consistency model of the mobile computing has some different charac-
teristics from traditional replicated databases in the wired network. Main characteris-
tic is that the propagation of updates often occurs in a different time frame. An update
occurred in one mobile device may not be propagated to other devices of the person
until he synchronize the devices to the server. Therefore thee consistency model for
this case is the eventual consistency that is characterized by the lack of simultaneous
updates.

We hope that this study can contribute in implementing various synchronization
applications while avoiding subtle incorrect processing of data synchronization.

References

[1] SyncML Initiative, Building an Industry-Wide Mobile Data Synchronization Protocol,
SyncML White Paper, Mar. 20, 2000, http://www.syncml.org

[3] Microsoft, ActiveSync Technology, http://www.microsoft.com/ mobile/pocketpc/
downloads/activesync/

[4] Palm Computing Inc., Palm HotSync Technology,
http://www.palm.com/support/hotsync.html

[5] JiYeon Lee, ChangHoe Kim, Jong-Pil Yi, Hoon Choi, “Implementation of the Session
Manager for a Stateful Server,” 2002 IEEE TENCON, Beijing, pp. 387-390, Oct. 31, 2002.

[6] SyncML Initiative, SyncML Representation Protocol, version 1.0.1, June 15,2001
[7] SyncML Initiative, SyncML Synchronization Protocol, version 1.0.1, June 15,2001
[8] SyncML Initiative, SyncML HTTP Binding, version 1.0.1, June 15,2001
[9] M. Dahlin, A. Brooke, M. Narasimhan, B. Porter, “Data Synchronization for Distributed

Simulation,” European Simulation Interoperability Workshop, 2000
[10] M. Satyanarayanan, J. Kistler, Kumar, et al. , “Coda: a highly available file system for a

distributed workstation environment,” IEEE Trans. On Computers, Vol. 39, No. 4, pp.447-
459, 1990.

[11] D. B. Terry at al., “Managing update conflicts in Bayou, a weakly connected replicated
storage system,” Proc. of the 15th Symposium on Operating Systems Principle, 1995.

[12] P. J. Braam, “InterMezzo file system: Synchronizing folder collections,”
http://www.stelias.com

[13] PostgreSQL Replicator by Matteo Cavalleri, Rocco Prudentino PostgreSQL Replicator:
Conflict Resolution Algorithms,”, http://pgreplicator.sourceforge.net/

[14] M. Cavalleri, R. Prudentino, U. Pozzoli, G. Reni, “A set of tools for building PostgreSQL
distributed databases in biomedical environment,” Proc. of the 22th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Jul. 2000.

[15] S. Balasubramaniam and B. C. Pierce, “What is a file synchronizer?” In Proc. of the 4th
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM-98), pp. 98-108, Oct. 1998. (http://www.cis.upenn.edu/~bcpierce/unison)

[16] N. Ramsey and E. Csirmaz, “An Algebraic Approach to File Synchronization,” ACM
SIGSOFT Software Engineering Notes, Volume 26, Issue 5, pp.175-185, Sep. 2001.

[17] Thomas W. Page et al. “Perspectives on optimistically replicated, peer-to-peer filing,”
Practice and Experience, Vol. 27 (12), December 1997.

[18] A. S. Tanenbaum and M. Steen, Distributed Systems, Principles and Paradigms, Prentice
Hall, 2002.

[19] D. B. Terry, K. Petersen, M. Spreitzer, and M. Theimer, “The case for non-transparent
replication: Examples from Bayou,” IEEE Data Engineering, Vol.21, No. 4,pp.12-20, Dec.
1998.

http://www.syncml.org/
http://www.stelias.com/
http://pgreplicator.sourceforge.net/

