
A Software Library for SyncML Server Applications

JiYeon Lee*, Hoon Choi**
Dept. of Computer Engineering, Chungnam National University

220 Kung Dong, Taejeon, 305-764, Korea
E-mail : {eunbi, hchoi}@ce.cnu.ac.kr

Abstract

The SyncML, the standard synchronization protocol,
supports the synchronization of various application
services such as an address book, a calendar. Even with
this standard protocol, application developers usually
spend a long time implementing service specific logics
and databases. This paper designed and implemented a
software library of common functions needed to
implement SyncML applications so that developers of
SyncML server code can save time and effort using this
library. We implemented a SyncML server with two
application services, vCard and vCalendar, using this
library. The test of the library and the server was carried
out by the SyncML conformance test specification..

1. Introduction

Data synchronization is an arbitration operation to
make replicated data on different devices consistent with
each other by resolving data conflicts. The mobile
industries including IBM, Lotus, Motorola, Nokia, Palm,
Psion, Starfish Software organized the SyncML
(Synchronization Markup Language) Initiative in order to
develop an open standard for data synchronization
mechanisms which can be applied to heterogeneous
platforms, networks and application services[1][2]. They
released the SyncML specification 1.0 in December 2000
and the latest version 1.0.1 in June 2001[3][4][5][6]. The
SyncML defines the common language and the protocols
of data synchronization.

A typical application which benefits by the SyncML
protocols is the PIMS (Personal Information Management
System) service such as an address book or a calendar,
but the protocols will support a variety of mobile
application services. There are many works for software
engineers when they build an application server from

scratch, or they add a new application to an existing
server; implementing SyncML protocols, creating and
updating a database, adding a new service logic and
changing many source codes at the server side and the
client side. The SyncML protocols define only the
standard language to represent the synchronization
information and the message exchanging procedure. So,
developers of application software are required to
implement application specific part as well as the
SyncML protocols. Despite the standardization of lower
level protocols, it takes for developers a long time to
implement the application specific part for each
application and this job is difficult and also error-prone. If
APIs (Application Programming Interfaces) are available
which can be commonly used for all synchronization
applications, developers are able to work with the APIs to
develop SyncML application services easily in a short
time period.

This paper introduces a software library of common

functions needed to implement SyncML applications so
that developers of SyncML server code can save time and
effort using this library. In order to design the Sync
Library, first we implemented a SyncML server with two
application services, vCard and vCalendar. Then, we
extracted sharable functions of the server code and
implement them in a form of a library with generalized
APIs. This library aims to be used with an automated
code generation system that we are currently working on.

We briefly introduce the architecture and functions of
our CNU SyncML Server 3.1 in Section 2. Then, we
describe the functions and APIs of the Sync Library in
Section 4. Test of the library is also mentioned.

2. CNU SyncML Server

We implemented a data synchronization server, named
the CNU SyncML Server 3.1, based on the standard
protocol specification of the SyncML Initiative. They are
able to process ADD, ALERT, COPY, DELETE, GET,
MAP, PUT, REPLACE, RESULTS, SEARCH,

* University Research Program supported by Ministry of Information &
Communication in South Korea
** This author was supported by SOREC(Software Research Center) of
KOSEF in Chungnam National Univ. SOREC is a Regional Research
Center Designated by Korea Science and Engineering Foundation.

mailto:eunbi, hchoi}@ce.cnu.ac.kr

SEQUENCE, STATUS, SYNC commands and six
synchronization scenarios such as Two-way sync, Slow
sync, One-way sync from client only, One-way sync from
server only, Refresh sync from client only, Refresh sync
from server only. Application services that we
implemented include a vCard formatted address book
service and a vCalendar formatted calendar service.

The CNU SyncML Server 3.1 has the functional
architecture shown in Figure 1.

The Server Application provides an interface for a user
or the application administrator to modify contents data at
the server. The Sync Adapter passes messages from client
devices to the SyncML Toolkit. The Sync Adapter also
passes the parsed data from the Toolkit to the Sync Agent.
The SyncML Toolkit encodes and decodes SyncML
messages. We used the reference implementation code
from the SyncML Initiative for the SyncML Toolkit[7].
The Sync Agent implements the synchronization
protocol[4] and the representation protocol of the
SyncML[3]. Therefore, it is application independent and
can be commonly used for all SyncML applications. On
the other hand, the Sync Engine implements application
dependent part such as handling service policies, user
authentication, and defining resolution rules in case of
data conflict. The Session Manager keeps temporary,
session related information that needs to be maintained
during a session in the server. Lastly, the Open DB
Interface implements interfaces to access data in
database[8].

Figure 1. Frames of the CNU SyncML Server 3.1

All the frames of the CNU SyncML Server except the

Session Manager were implemented into DLLs (Dynamic
Link Library). The Session Manager was implemented
into an independent process because implementing it into
a DLL will lose the session information once the DLL is
unloaded. The communication with other frames in the
server is done by RPC (Remote Procedure Call). We used
HTTP(Hyper Text Transfer Protocol)[6] to communicate
with remote SyncML client devices and JNI (Java Native

Interface) to load DLLs.
The SyncML can be used for many application

services such a calendar, an address book, an email, and a
text messaging service.

Figure 2. Service Dependent Handler

We designed the server so that the code that is

dependent on a specific application is separated from the
application independent code. This is for application
developers to reuse service independent part when he
adds a new application. The developers need to change
only the Sync Engine. This architecture results in the
better extensibility of the server, reduced costs and fast
development of new application services (Figure 2).

3. Sync Library

Even though we separate the service dependent part
from the independent ones to minimize the effort of
adding a new service, implementing a new service in the
Sync Engine still requires a lot of work and expert level
knowledge about the server code such as adding a
database table related to application service, adding APIs
to interface between the Sync Engine and database,
adding APIs to interface the Sync Engine with the Sync
Agent and so on.

APIs of the Sync Engine and database require different
input parameters, data structures and database fields
specific for each application. Each application requires its
own functions implemented in the Sync Engine. But, the
basic role and usage of the functions are very similar from
one application to other.

Therefore, we generalized the functions in the
application service dependent parts and implemented
them into a software library called the Sync Library.

3.1. Implementation of the Sync Library

We classified the application dependent part into two
groups, one is for database and the other is source code
that performs data synchronization. Service dependent
part in the database includes an application identifier and
database tables specific for the application. In source
codes, the dependent part includes the application data
structures, the interface code to database in order for
storing the application contents data, and the Sync Engine.

We designed and implemented service dependent part

and other common and sharable functions into the Utility
module and the Core module of Figure 3.

The Utility module provides the general utilities. The
Core module is composed of the functions, which is
similar to the Service Dependent Handler module of the
CNU SyncML Server 3.1. The main roles of the core
module are command processing and data processing.
The command processing is to process ADD, REPLACE,
DELETE, COPY commands and to find contents data.
The data processing is to encode, decode the vCard or
vCalendar formatted data and to compare the data field by
field.

For implementation of the Sync Library, we defined
the Utility class, the Core class for each module. Table 1
lists the methods and their operations of the Core class.

Table 1. The methods of Core class
Method Description

cmdAddEntry It adds the contents data to
database with new GUID of an
application service

cmdReplaceEntry It replaces the contents data of
an application service

cmdDeleteEntry It deletes the contents data of an
application service

cmdCopyEntry It makes a copy of an entry of an
application service

cmdFindEntry It retrieves the entry with GUID
of an application service

datCompare It compares the contents data of
two entries field by field of an
application service and returns
the results

datEncode It encodes the contents data into
each application format and
returns the results

datDecode It decodes the encoded data into
internal data format and returns
the results

The Utility class has many general functions; to make

a token for an application service, to control a general
string, to generate a string including certain information,
to find an interesting information from a string, to convert
local time format into UTC(Universal Time, Coordinated)
time format and so on. Table 2 describes some of the
methods and their operations of the Utility class.

Table 2. The methods of the Utility class
Method Description

utParseURI It gets an application type and
LUID from a URI

utBuildURI It generates a URI with an

application type and LUID
utGetdbIDfromGuid It splits the source address of a

message into GUID and an
application identifier

utMakeUTC It converts a local time string
into a UTC time string

utChopNull It chops NULL character from a
string

utGetToken It gets a delimiter and a token
value from a given string

utTokenize It makes a token for each
application

utLog It writes the execution status and
results

The Sync Library was implemented as a static library

using C++. A server developer can easily use the APIs
and functions by linking the library to the server.

3.2. Implementation of the CNU SyncML Server
using the Sync Library

We implemented a new version of the CNU SyncML
Server 3.1 using the Sync Library to show the correctness
of the library operations. The new server also supports
synchronization of an address book and a calendar. The
following Figure 3 shows the framework of the server
based on the Sync Library. The Sync Agent interfaces
with the Sync Engine in the same way as the version 3.1
does. The Service Dependent Handler module of the Sync
Engine is implemented by using the Sync Library APIs
and supports to synchronize a vCard formatted address
book and a vCalendar formatted calendar like the server
version 3.1.

Figure 3. Framework of the SyncML Server

based on the Sync Library

There is still the Service Dependent Handler module in

the new implementation. But this module is different from
the Service Dependent Handler of the CNU SyncML

Server 3.1. The new Service Dependent Handler is mostly
coded with calls to APIs of the Sync Library, so is much
compact in size. A developer can save much of
programming effort by using pre-defined library APIs.

We verified the Sync Library by testing the server
based on the Sync Library according to the conformance
test specification of the SyncML Initiative[9][10]. The
SyncML conformance test scenarios consist of
exchanging messages that include various commands
such as ADD, REPLACE, DELETE and COPY between
clients and the server for each application service. We
also used our own test scenarios for synchronization tests.
Both of the two application services; an address book and
a calendar are tested intensively. We compared and
analyzed the test results from the server with the Sync
Library according to the conformance test specification
and with the results from the CNU SyncML Server 3.1.

Table 3. Results of 12 test cases of the

conformance test
Test Result Note

① Two-way with Client &
Empty Server pass ○

② Two-way with Client Add
& Server Add pass ○

③ Two-way with Client
Replace & Server Replace pass ○

④ Two-way with Client
delete & Server Delete pass ○

⑤ Two-way with Client Add
(shows empty server sync
data)

pass ○

⑥ Two-way with Server Add
(shows empty client sync
data)

pass ○

⑦ Two-way with Server with
large amount of data
(shows multiple message)

pass ○

⑧ Two-way with Client with
large amount of data
(shows multiple message)

pass ○

⑨ Two-way with Server
responding busy pass ○

⑩ Two-way with Server not
responding Client

only
⑪ Two-way with

communication broken
during sync

pass ○

⑫ Two-way Slow Sync pass ○

Figure 4 shows a part of the server message. This is for

the case that a server processes the requests from a client
and then sends a client the result status with the data

changed by the server. We confirmed that the two servers
have the same results.
4. Conclusion

We redesigned the code for application service-
dependent parts of a SyncML server and generalized the
functions into a software library. Interface of the library is
defined as APIs to use when we build a SyncML server or
add a new application to the server. We re-implemented
our CNU SyncML Server 3.1 using the Sync Library in
order to verify the functions of the Sync Library. The
server with Sync Library worked well and passed all the
test cases of the SyncML conformance test.

Using the Sync Library, developers do not need to
implement functions that already built in the library,
therefore they can save a lot of time and effort. This will
contribute efficient and economical development of new
applications.

As a follow-on research, we are currently working on
an automated tool that uses the Sync Library and
generates source code of application service-dependent
parts. With this tool, we hope that development process of
a new service becomes even faster and easier.

Figure 4. A part of the result message from a server

5. References

[1] SyncML Initiative, http://www.syncml.org
[2] SyncML Initiative, Building an Industry-Wide Mobile

Data Synchronization Protocol, SyncML White paper,
Mar. 20, 2000

[3] SyncML Initiative, SyncML Representation Protocol
version 1.0.1c, June 15, 2001

[4] SyncML Initiative, SyncML Synchronization Protocol
version 1.0.1, June 15, 2001

[5] SyncML Initiative, SyncML Architecture, version 0.2,
May 10, 2001

[6] SyncML Initiative, SyncML HTTP Binding, version 1.0.1,
June 15, 2001

[7] SyncML Initiative, SDA2 Specification Version 0.2, Aug.
21,2000

[8] Byung-Yun Lee, Gil-Haeng Lee, JinHyun Cho, SooHee
 Ryoo and Hoon Choi, “SyncML Data Synchronization
System based on Session Manager,” Journal of KISS,
Vol.8, No. 6, pp.647-656, Dec. 2002.

[9] SyncML Initiative, SyncML Conformance Test Suite
version 0.2, 2001.1.15

[10] SyncML Initiative, SyncML Manual Test Cases version
0.3, 2001.2.2

http://www.syncml.org/

