
 1

Implementation of the Session Manager for a Stateful Server

JiYeon Lee0, ChangHoe Kim, Jong-Pil Yi, Hoon Choi
Dept. of Computer Engineering, Chungnam National University

Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764

Republic of Korea

E-mail : {eunbi, kchoe, jpyi, hchoi}@ce.cnu.ac.kr

Abstract - Advances of mobile communication technologies and
device technologies brought the mobile computing era where
people use multiple information devices such as a PDA, a
cellular phone and a handheld PC to connect with various
Internet services. Very often, the client device needs to exchange
multiple packages or messages with a server in the course of
service access which is called a session. There are several ways
for a server to keep certain information that is required to be
maintained during a session. This study proposes and
implements three of these mechanisms for a stateful server. We
carry out the performance measurement from the
implementations and compare each mechanism.

1. Introduction

Advances of mobile communication technologies and
device technologies brought the mobile computing era
where personal information devices such as
PDA(Personal Data Assistant)s, handheld PC(Personal
Computer)s and cellular phones become important part
of our life. People access Internet service more often than
before and from anywhere, anytime.

Client devices access various types of Internet servers
by sending a service request. Sometimes it is enough to
send a single message to a server and get a response. But
it is common that the interaction between a client and a
server needs exchange of multiple messages in sequence.
A stateful server maintains the information about the
client and the on-going service request during this
interaction which is called a session. A stateless server
does not store the session information [1].

An easy way to keep this temporary, session-related
information for a stateful server is to fork a process for
each session so that the process saves the information in
its local variables. But the server may suffer from
performance degradation due to the overhead of creating
processes and heavy memory usage. An alternative
mechanism is to use a DLL(Dynamic Link Library)
function. Because DLL shares memory spaces, it can
relieve from a server’s memory overhead. However, this
mechanism has a problem to keep the session
information after DLL is unloaded. So the session
information must be stored in a persistent storage of the
server such as a database or a file system.

This paper investigates mechanisms to maintain the

session information for stateful servers. We implement
three mechanisms and evaluate their performance for
comparison. The application that the server is used for is
data synchronization between client devices such as
PDAs, cellular phones and a network server [2][3]. Three
versions of this server implement above-mentioned
mechanisms to store session information.

After a brief introduction of the SyncML Server
architecture in Section 2, we describe various
mechanisms we implemented for a stateful server in
Section 3. Then, we compare the performance of these
mechanisms in Section 4.

2. SyncML Server Architecture

Proliferation of personal information devices results in
a problem of maintaining user data that are spread over
multiple devices. A user may have an address book in a
cellular phone and has almost identical data in his PDA
as well. The user must update the data from all of these
devices whenever a change is made. This situation is
painful and often leaves some data to be inconsistent
with the same item in other devices. Therefore, the
SyncML Initiative has produced a standard protocol suite
in order for multiple information devices to synchronize
their data with a server [4][5][6][7].

We implemented three versions of data
synchronization servers, i.e. CNU SyncML Server 2.0,
the Server 3.0 and the Server 3.1, based on the standard
protocol suite from the SyncML Initiative [8]. The CNU
SyncML Server consists of 8 frames as shown in Figure
1.

Figure 1. CNU SyncML Server Framework

 2

The Server Application provides an interface for a
user or the application administrator to modify contents
data at the server. The Server Adapter passes messages
from client devices to the SyncML Toolkit via the
Communication Adapter. The Server Adapter also passes
the parsed data from the Toolkit to the Sync Agent. The
SyncML Toolkit encodes and decodes SyncML
messages. We used the reference implementation code
from the SyncML Initiative for the SyncML Toolkit. The
Sync Agent implements the SyncML protocols [4][5].
Therefore, its function is application independent and can
be commonly used for all SyncML applications. On the
other hand, the Sync Engine implements application
dependent part such as a service policy, resolution rules
in case of data conflict, etc. The Session Manager
manages a temporary, session related information that
needs to be maintained in the server during a session.
Lastly, the Open DB Interface implements interfaces to
access data in database.

All the frames of the CNU SyncML Servers except the
Session Manager were implemented into DLLs. We used
HTTP(Hyper Text Transfer Protocol) [6] to communicate
with a SyncML client device and JNI(Java Native
Interface) to load DLLs.

3. Server Session Manager

When the first message arrives from a client device for
the request of data synchronization, the server processes
it and sends back the status message. The server may also
request the client device to synchronize with data that
have been modified by other devices or by the server
itself. This synchronization procedure is accomplished by
exchanging several messages in order [4]. We call this
synchronization period a session (Figure 2).

Figure 2. Timing diagram for a session

When a session is begun, the server needs to maintain

the session information such as a session identifier, the
synchronization commands and the status of commands
processed by that time. This information is used to build

response messages to the client. The session information
is temporary and is released once the session is over. The
Session Manager takes charge of maintaining the session
information in this system.

For the CNU SyncML Server 2.0, we implemented the
Session Manager in a form of a DLL as shown in Figure
3. Therefore the Session Manager is loaded into memory
just when it is used. This allows us to save the server’s
resource. But on the other hand, we encounter with a
problem in keeping the session information after the DLL
is unloaded. To resolve it, the Session Manager stores the
session information into a persistent storage, SYNCSM
database. Then it is necessary for the Session Manager to
connect the SYNCSM database every time it receives a
message from the client. That may cause the performance
degradation as we investigate in Section 4.

Figure 3. CNU SyncML Server 2.0

The CNU SyncML Server 3.0 has a similar framework

to the CNU SyncML Server 2.0. One of the differences is
that the Session Manager is implemented into an
independent process that communicates with other
frames in the server by RPC(Remote Procedure Call) as
shown in Figure 4. In this system, the SYNCSM database
stores the session information as the same way as the
Server 2.0. But the connection to the SYNCSM database
is maintained during a session. Therefore, the number of
connection set up to the database reduces to once rather
than the number of messages from the client.

Figure 4. Communication between CNU SyncML Server

and Session Manager

In the version 3.1, the Session Manager is an
independent process as before, but it stores the session
information into tables in the main memory. After
completing the synchronization, the Session Manager
removes the session information from memory and
closes the session. Therefore we avoid accessing a
database to store temporary information. Using a
persistent storage such as a database or a file system

 3

results in increased access time and bottleneck when
servicing multiple sessions. By keeping session
information in memory, we can reduce the processing
time of a message.

Weakness of this approach might be reliability.
Despite of the fast processing time, the Session Manager
may loose the information if the Session Manager
process fails. Therefore the server needs fault tolerant,
replicated Session Manager processes. Anyway, if the
Session Manager process fails while a session is on the
way, the client will retry the synchronization procedure
again from the beginning. Loosing the session
information does not mean loosing user data.

The Sync Agent accesses the session information
through the Session Manager APIs. Figure 4 shows a
communication between the server frames and the
Session Manager in the CNU SyncML Server 3.1. The
difference between the Server 3.0 and the Server 3.1 is
the place where the session information is stored. The
former stores it in the persistent database while the latter
does it in the main memory.

The timing diagram between the Sync Agent and the
Session Manager during a session is illustrated in Figure
5. Before starting a synchronization procedure, the server
performs authentication of the client and the validation of
the last anchor value. After that, the command handler of
the Sync Agent begins to process the received message.
Then Session Manager creates a new session information
for the synchronization. Next, the Session Manager
returns the session identifier to the Sync Agent. The Sync
Agent performs the synchronization procedure through
use of the session identifier and the interface to the
Session Manager. When the synchronization is
completed, the Session Manager removes the session
information in memory and closes the session.

Figure 5. Timing diagram of the synchronization between

the server and Session Manager

Figure 6 shows the data structure used in the Session

Manager. The ServerSessionInfo structure consists of the
following data: user name, device identifier, session
identifier, authentication type, list of commands from the
client, status list, results list and list of commands from

the server.

Figure 6. ServerSessionInfo Structure

The communication between the SyncML server and

the Session Manager is performed by the RPC with the
predefined interface. Figure 7 shows a part of the
predefined interface to the Session Manager.

- smCreate() creates a new session.
- smGetCurrentSessionInfo() get the current session

information since the creation of the session.
- smAddCmd() attaches the command information to

the list.
- smDoneSession() removes the session information

and deallocates the memory spaces after completing
the synchronization with a client.

Figure 7. Session Manager Interface

4. Performance Comparison

For the evaluation of various mechanisms to maintain
temporary information for a stateful server, we measured
times to process one synchronization session in each
version of servers. The implementation and test
environment was Microsoft Visual Studio C++ on
Windows platforms and measurement was carried out
with the parameters shown in Table 1.

We measured the times from CNU SyncML Server 2.0
(session information in database), Server 3.0 (database
with reduced connection) and Server 3.1 (session
information in memory) under the same conditions. The
time we measured is processing delay by the server only,
it does not include the message transmission delay on the
network. Test messages include various commands: ADD,

 4

REPLACE, DELETE, PUT, GET commands and so on.

PARAMETER
Number of user 10 Users
Number of device More than 2 ea each person

Sync. type

Two-way Sync
Slow Sync
One-way Sync from Client
One-way Sync from Server
Refresh Sync from Client only
Refresh Sync from Server only

Iteration of the sync. 500 times

Table 1. Parameters for Performance Test

Figure 8. depicts the results from the performance

measurement. It turns out that the CNU SyncML Server
3.1 performs best as we expected. The CNU SyncML
Server 3.1 is 44% faster than the CNU SyncML Server
2.0 and 31% faster than the CNU SyncML Server 3.0.
The Session Manager in the CNU SyncML Server 3.1
manages the session information in memory and do not
connect to the SYNCSM database, so it has the fastest
processing time than other mechanisms here.

Figure 8. Performance of CNU SyncML Servers

The data exchanged during the synchronization

between clients and a synchronization server fall into two
categories. One is the application-specific contents data
such as the address book data, and the other is the
session information which is managed by the Session
Manager temporarily during a session. It is obvious to
store the contents data in a persistent and stable storage
like a database. But, for the information needed to
maintain a session, managing it in main memory is more
efficient because it is valid during a session only.

The CNU SyncML Server 3.1 has the architecture that
the Session Manager manages the session information in
the memory. And the experimental results show the
improvement of the processing time compared with other
server versions that implement other mechanisms to
maintain session information.

5. Conclusion

There may be several mechanisms to store temporary,
session-related information in a stateful server. In this
paper, we implemented three mechanisms and evaluated
their performance for comparison.

The application the server is used for is data
synchronization between client devices such as PDAs,
cellular phones and a network server. We proposed and
implemented three versions of data synchronization
servers. All three versions are based on the standard
synchronization protocol by the SyncML initiative. Three
servers implemented above-mentioned three mechanisms.

The CNU SyncML Server 3.1 which stores the session
information in main memory showed the best
performance: 44% faster than the Server 2.0 and 31%
faster than the Server 3.0.

Though the mechanism used for the Server 3.1
performs best, the mechanism used for the Server 3.0
might be an alternative in case the application needs high
reliability in the synchronization procedure, i.e., the
possible loss of temporary session information due to the
failure of the Session Manager process is not acceptable.
It depends on an application which property comes first,
reliability or the fast processing time.

REFERENCES

[1] G. Coulouris, J. Dollimore & T. Kindberg,
Distributed Systems, Concepts and Design(3rd Ed.),
Addis on-Wesley, 2001

[2] SyncML Initiative, http://www.syncml.org
[3] SyncML Initiative, Building an Industry-Wide

Mobile Data Synchronization Protocol, SyncML
White paper, Mar. 20, 2000

[4] SyncML Initiative, SyncML Synchronization
Protocol version 1.0.1, June 15, 2001

[5] SyncML Initiative, SyncML Representation
Protocol version 1.0.1c

[6] SyncML Initiative, SyncML Architecture, version
0.2, May 10, 2001

[7] SyncML Initiative, SyncML HTTP Binding, version
1.0.1, June 15, 2001

[8] Byung-Yun Lee, JinHyun Cho, SooHee Ryoo and
Hoon Choi, “Implementation of Data
Synchronization Protocol in Mobile Communication
Environment,” Journal of KISS, submitted

Acknowledgement
JiYeon Lee and ChangHoe Kim were supported by BK21
Human Resource Development Consortium for
Information Technology of Chungnam National
University.
Hoon Choi was supported by University Research
Program of Ministry of Information & Communication
in Republic of Korea.

