
Jini Lookup Service for Resource-constrained Mobile Devices

Chang-hoe Kim , Myounghwan Oh, Hoon Choi
Dept. of Computer Engineering, Chungnam National University

220 Kung Dong, Daejeon, 305-764, Korea
E-mail : {kchoe, mhoh, hchoi}@ce.cnu.ac.kr

Abstract

 The lookup service of Jini technology helps clients
find and connect to network services and information.
The code size of the service is big for mobile devices
which usually have limited memory resource. This study
proposes a smaller design and implementation of the
lookup service so that mobile devices can run it for its
own Jini federation in an ad-hoc environment.

1. Introduction

Advances of mobile communication technologies and
device technologies brought the mobile computing era
where people use mobile devices such as a PDA(Personal
Data Assistant), a cellular phone and a handheld
PC(Personal Computer) for their personal or business
work.

Such devices may run alone, or they may cooperate
with other devices and computers to share computing
resources. For instance, a salesperson may use a network
printer in his office to make a hard copy of the sales
record kept in his PDA. His PDA must be equipped with
an appropriate printer driver for this purpose. If the
salesperson visits a customer and needs to make a
printout on the customer’s printer, he has to install a
different driver software specific for the customer’s
printer along with appropriate system re-configuration.
This is tedious and difficult job for the most of ordinary
users.

To ease the difficulty, Sun Microsystems introduced
the Jini technology in 1999 that supports distribution of
software-defined services and information in network
environments. Jini allows configuration of devices and
software being amended using a simple “network plug
and work” model like the Universal Plug and Play(UPnP).
The lookup service of Jini technology helps clients find
and connect to network services, therefore it is the

integral of Jini.
The Jini lookup service was designed to run on a

desktop level computer. However there are circumstances
in which a mobile device needs to act as a lookup server.
For example, a connection to the network is not available
in the wireless environment thus mobile devices are
isolated from the wired network, or mobile devices may
want to communicate directly in a peer-to-peer method
using an infrared or a bluetooth interface within a closed
work group or in an ad-hoc network. Code size of the
Sun’s implementation of the lookup service is too big to
be loaded in mobile devices for this purpose.

Figure 1. Use of the Mobile Lookup Service

This study proposes a smaller implementation of the

Jini lookup service in order to load it into a mobile device.
The basic idea is to divide the original, monolithic lookup
service into multiple modules, and have a main module

 This Research was supported by SOREC(Software Research Center) of
KOSEF in Chungnam National University. SOREC is a Regional
Research Center Designated by Korea Science and Engineering
Foundation(KOSEF).

dynamically load other modules on-demand. This
mechanism provides complete Jini capability and enables
resource-constrained devices to participate fully and
transparently in Jini federation. Therefore it is possible
for small devices such as mobile devices and embedded
devices to host the lookup service.

On-demand downloading of lookup service modules
surely slows down the lookup service. However, as long
as a mobile device contains only the modules necessary
for its own service, downloading of other modules is not
required or takes place infrequently. As. The overhead
may be tolerable considering the benefit of the
mechanism, i.e., scalability of the Jini lookup service and
the consequent enabling of mobile devices to participate
in a wider range of mobile applications.

After a brief introduction of the Jini architecture and
mechanism of the Jini lookup service in Section 2, we
describe the design and a prototype implementation of
lookup service for mobile device in Section 3.

2. Jini Architecture and Lookup Service

Jini technology is a simple infrastructure for providing
services in a network and for creating spontaneous
interactions between programs that use these services.

Devices build a Jini federation using discovery and
join protocols by the following steps.
○1 When a service is booted on the network, it uses a
discovery process to find the local lookup services.
The service then registers its proxy object with each
lookup service.
○2 A client program asks for services by the Java
language type the client will use. The lookup service
returns the proxy object.
○3 The client issues requests to service by invoking
methods on the proxy object. Proxies provide all of the
code needed to connect to a particular service. The Jini
system does not define the protocol that the proxy and
its service use to communicate with.

Proxies are similar to device drivers in that they allow

an application program to interact with a service while
shielding it from the details of that service. But Jini
proxies are installed by the services themselves and are
dynamically downloaded when clients wish to use a
service. Clients need not know the implementation details
of these proxies.

Services can join or leave the network in a robust
fashion and clients can rely upon the availability of
visible services. Jini is self-healing because if the network
is recovered when a network failure isolated a service
from a lookup service, the service will receive a message
from the lookup service and rejoin.

The Java virtual machine provides that objects can be
moved around the network in a consistent and trustable
manner. These properties enable a system built on
dynamic service proxies, moving object state and
implementation to the most useful parts of a system when
they are needed. Each Jini system is built around one or
more lookup services.

The Jini lookup service is a directory service and it has
information for all services in a Jini federation. The Jini
lookup service interprets Java types, so it can retrieve a
proxy that implements a particular Java interface and find
a super class or super interface of the proxy. The internal
implementation of the lookup service is hidden for user.
Users only know the lookup service’s proxy that
implements ServiceRegistrar interface.

The ServiceRegistrar interface is used to implement all
the lookup services. Users do not need to know how it
communicates between proxy and a lookup service in
detail. The Java RMI(Remote Method Invocation), socket
or message passing are usually used for the
communication between them.

The main role of the lookup service is the Jini
registrar. It receives requests for registration from
services. Each registration is made by a service item
which consists of proxy object of the service, service
identifier and a set of attributes associated with the
proxy.

Other functions of lookup services can be listed as:
− starting a Jini federation
− managing databases which permanently store

service items, lease, registration
− supporting self-healing network
− generating a unique service identifier
− merging multiple Jini federations by

importing or exporting a lookup service

Functions of a lookup service must implement the

ServiceRegistrar interface by RMI proxy or by using a
similar mechanism. When clients or service providers
access a lookup service, they download ServiceRegistrar
interface object and then invoke a method of the object.

The code of the lookup service implemented and
distributed by Sun Microsystems is made for stationary
computers, and all functions of the lookup service have
been implemented into one object. It is too big for small,
limited mobile devices to run.

3. Jini Lookup Service in Mobile Devices

It is not necessary that all the functions are ready
always. Some functions may not be used at all, and some
lookup services may be sufficient to provide only a subset
of the lookup service depending on the usage of the
particular application. For example, we may want a

lookup service that registers a set of specific service items
and it need not provide event or log management
functions. In this case, carrying all the functions is a
waste of memory.

In order to flexibly compose various scale of lookup
service capabilities, we propose an approach that breaks
down the lookup service functions into multiple,
downloadable modules and then dynamically loads,
removes modules on-demand.

(1) Core Module: It implements three protocols that
comprise the discovery process, i.e., the unicast discovery
protocol, the multicast request protocol and the multicast
announcement protocol. This module monitors packets of
the multicast request protocol from new startup
clients/services for the groups that it handles. This module
also implements the registrar proxy. At the end of a
successful discovery, the requesting client/service holds
one or more lookup service registrar proxies.

(2) Lookup Module: This module looks after and
persists the service items of the registered services. And it
supports a template search based on a combination of
three criteria: service identifier, the type that the service
supports, and associated attributes.

(3) Service Management Module: This module
manages services by storing and removing service items.

(4) ID Generator Module: This module creates the
service ID.

(5) Event Module: This module manages event
solicitation by storing a reference to a listener object from
the client.

 (6) Lease Module: If the lease under negotiation is
granted by the lookup service, then a listener object is put
into storage.

(7) Log Module: It supports persistent logging in a
recoverable manner.

Figure 2. The Lookup Service Modules

The core module resides in a device at all times. Other
modules can be optionally downloaded to the mobile
device and dynamically re-composed with the core
module. Optional modules are required to be registered as
the service items in other lookup servers, possibly in a
backend, monolithic lookup server in a wired network.
When the lookup service of a mobile device receives
from its client a request for which the lookup service
needs modules that the device does not carry, the lookup
service can either reject the client’s request or it can
connect to a backend lookup service to download the
required modules. Therefore, the mobile device can be a
Jini client as well as a server.

The modules of the lookup service shown in Fig. 2 are
not the remote proxy to communicate by RMI, but they
are the local proxy that contains service objects
themselves. The size of modules gets bigger than remote
proxy, but the services need not communicate with the
backend server anymore, once downloaded.

Before the service is operational, the core module and
some optional modules are loaded into a mobile device by
off-line operation to compose a mobile lookup service.
Deciding which of optional modules to load depends on
the scale of lookup service functionality that the mobile
device likes to provide or depends on the hardware
capacity of the mobile device. If hardware permits, the

Figure 3. The Skeleton of the Dynamic Module

Loading Mechanism

mobile device can carry all of the optional modules,

then this lookup service becomes a full-scaled lookup
service. As long as the mobile lookup service carries the
functions that clients need, it looks as if it is a full-scaled
lookup service at client’s side.

After testing our prototype implementation, we
confirmed the ability of the mobile lookup service to
dynamically integrate with the optional modules on-
demand while providing the full service of the Jini
specifications. Table 1 shows the sizes of compiled class
and run-time memory of the modules and the class size of
the monolithic lookup service measured from the Sun’s
reference implementation. The size of the monolithic
lookup service is 220 Kbytes whereas the core module’s
is 143 Kbytes.

The original monolithic lookup service also requires
much bigger space than the mobile lookup service with
respect to the run-time memory. For example, when we
load the core module, the size of required memory is only
1746 Kbytes, whereas the monolithic lookup service
requires at least 3694 Kbytes. Even if we add modules,
the mobile lookup service use smaller memory. For
example, if we need the lease management function
additionally, then we configure the mobile lookup service
with two modules. The class size of this case is only
60.27 Kbytes and the size of memory to run it is 1806
Kbytes which is much smaller than the monolithic lookup
service’s requirement.

The optional modules that may not be used anymore
can be removed immediately from the device, if the user
chooses. This will further save the memory space,
resulting in the ability to run our implementation on
smaller and more various types of devices in a various
service scale.

We tested our implementation on the J2SE(Java2
Standard Edition) environment. If our implementation is
tested on the J2ME(Java2 Micro Edition), we expect the
run-time memory requirement to become even smaller.

Table 1. Class Size and Memory Requirement
(Kbytes)

Module Class Size Memory
Requirement

Core Module 143 1746
Event Module 10.9 60
Log Module 31.1 120

Lease Module 8.77 18
Lookup Module 257 110

Service Management
Module 15 30

ID Generator Module 2 45
All of the Modules 233.1 2102

Reference
Implementation 220 3694

As we mentioned earlier, this mobile lookup service is

designed for a small device and for a case that the lookup
service does not have to provide full functionality of the
specification. Then the core module and possibly one or

two additional modules are quite enough for a lookup
service and saves memory resource.

4. Conclusion

The mechanism described in this paper makes Jini
lookup service be able to run on a small sized mobile or
embedded device while it is fully compatible with the
Sun’s reference implementation. Inevitable cost is to
search and download one or more additional modules
from a backend lookup service in case that the requested
function is not already loaded in the mobile device. It will
result in some communication cost and delay. But if it
does not happen very frequently, the overhead may be
acceptable.

Our mobile lookup service is beneficial when the full-
scaled lookup service is not available or when a mobile
device has to provide a lookup service to other devices
that do not have capability to directly access the full-
scaled, backend lookup server in the Internet. By
providing a way for small devices to participate in and to
form Jini federations, our mechanism can contribute the
Jini technology to be more useful in mobile computing
era.

It is possible to make finer grain modules so that wider
range of different Jini functions can be loaded into a
memory at the same time. Then we can reduce the chance
of downloading necessary functions from the backend
lookup server, thus obtain better performance. Users can
compose a customized lookup service based on his device
capability and his need of the lookup service.

5. References

[1] Ken Arnold, Bill Joy, The Jini Specifications(2nd Ed.),

Addison-Wesley, 2001.
[2] Sing Li, Professional Jini, Wrox, 2000.
[3] W. Keith Edwards, Tom Rodden, Jini Example by

Example, Prentice Hall, 2001.
[4] Jan Newmarch, A Programmer’s Guide to Jini Technology,

Apress, 2000.
[5] W. K. Edwards, Core Jini,(2nd Ed), Prentice-Hall, 2001.
[6] Sun Microsystems Inc., The Remote Method Invocation

Specification, 2001.
[7] www.sun.com/jini/specs
[8] www.upnp.org/resources.htm/

